Cyclostationary Gaussian Linearization for Analyzing Nonlinear System Response under Sinusoidal Signal and White Noise Excitation

نویسنده

  • R. J. Chang
چکیده

A cyclostationary Gaussian linearization method is formulated for investigating the time average response of nonlinear system under sinusoidal signal and white noise excitation. The quantitative measure of cyclostationary mean, variance, spectrum of mean amplitude, and mean power spectral density of noise are analyzed. The qualitative response behavior of stochastic jump and bifurcation are investigated. The validity of the present approach in predicting the quantitative and qualitative statistical responses is supported by utilizing Monte Carlo simulations. The present analysis without imposing restrictive analytical conditions can be directly derived by solving non-linear algebraic equations. The analytical solution gives reliable quantitative and qualitative prediction of mean and noise response for the Duffing system subjected to both sinusoidal signal and white noise excitation. Keywords—Cyclostationary, Duffing system, Gaussian linearization, sinusoidal signal and white noise.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonlinear Phenomena in a Stochastically Excited Dynamic System

The response of strongly nonlinear dynamic systems to stochastic excitation exhibits many interesting characteristics. In this paper, excitation forms like white noise and Gaussian band limited noise are applied to a bilinear system. The nonlinear characteristics cannot be represented sufficiently accurate using statistical linearization techniques. Integration techniques have to be used. The e...

متن کامل

استخراج انرژی الکتریکی از نوسانات مکانیکی تصادفی توسط سامانه های الکترومکانیکی خطی و غیر خطی: مقایسه نوفه های مختلف

We investigate harvesting electrical energy from Gaussian white, Gaussian colored, telegraph and random phase-random amplitude (RARP) noises, using linear and nonlinear electromechanical systems. We show that the output power of the linear system with one or two degrees of freedom, is maximum for the Gaussian white noise. The response of the system with two degrees of freedom is widened in a la...

متن کامل

Nonlinear random vibration of the cable modeled as MDOF system and excited by filtered Gaussian white noise

We investigate the nonlinear random vibration of the cables with small sag and excited by colored or filtered Gaussian white noise uniformly distributed on the cable. The cable and many other systems in science and engineering can be modeled as nonlinear stochastic dynamical (NSD) systems with multiple degrees of freedom (MDOF). It is known that the analysis on the probabilistic solutions of MD...

متن کامل

Self-tuned LMS Algorithm for Sinusoidal Time Delay Tracking

In this paper the problem of estimating the time delay between two spatially separated noisy sinusoidal signals by system identification modeling is addressed. The system is assumed to be perturbed by both input and output additive white Gaussian noise. The presence of input noise introduces bias in the time delay estimates. Normally the solution requires a priori knowledge of the input-output ...

متن کامل

Non-Data-Aided Feedforward Carrier Frequency Offset Estimators for QAM Constellations: A Nonlinear Least-Squares Approach

This paper performs a comprehensive performance analysis of a family of non-data-aided feedforward carrier frequency offset estimators for QAM signals transmitted through AWGN channels in the presence of unknown timing error. The proposed carrier frequency offset estimators are asymptotically (large sample) nonlinear least-squares estimators obtained by exploiting the fourthorder conjugate cycl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015